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Enhancing Recognition of Stereotyped
Movements in ASD Children through Action
Pattern Mining and Multi-Channel Fusion

Baigiao Zhang, Yanran Yuan, Wei Qin, Xiangxian Li, Weiying Liu, Wenxin Yao, Yulong Bian and Juan Liu

Abstract— Stereotyped movements play a crucial role
in diagnosing Autism Spectrum Disorder (ASD). However,
recoghizing them poses challenges, due to limited data
availability and the movements’ specificity and varying
duration. To support in-depth analysis of ASD children’s
movements, we constructed the ACSA653 dataset, com-
prising 653 videos across six classes of stereotyped move-
ments. This dataset surpasses existing ones in both scale
and category. To improve the recognition of stereotyped
movements, we propose APMFNet, a model that integrates
three modules: Visual Motion Learning (VML), Skeleton
Relation Mining (SRM), and Multi-channel Fusion (MF). The
VML module focuses on extracting spatial and motion
information from RGB and optical-flow sequences. The
SRM module effectively mines essential motion patterns
associated with stereotyped movements through cross-
modal graph. The MF module fuses multi-modal informa-
tion through cross-modality attention to facilitate decision-
making. Tested on ACSA653, APMFNet outperforms current
state-of-the-art methods, suggesting its potential to identify
stable patterns of stereotyped movements in children with
ASD.

Index Terms— Autism spectrum disorder, Human activity
recognition, Multi-channel fusion, Stereotyped movement

[. INTRODUCTION

Autism Spectrum Disorder (ASD) includes a range of
neuro-developmental disorders characterized by challenges in
social skills, communication abilities, and behavioral expres-
sion. Timely diagnosis of ASD is essential to mitigate the
development of additional symptoms and minimize the impact
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on social interaction and behavior [1]. The two major symp-
toms of ASD are social interaction impairment and restricted
and repetitive patterns of behavior, interests, or activities.
Stereotyped movements stand as one of the primary indicators
[2]. Therefore, the recognition of stereotyped movements
becomes a key factor in diagnosing ASD. Traditional methods
for diagnosing ASD-related stereotyped movements, such as
scale assessments, observations, and video analyses, not only
require involvement from medical professionals but also suffer
from high labor intensity, time consumption, and subjectivity.
Consequently, there is an urgent need to develop more efficient
and accurate methods for recognizing stereotyped movements.

Data-driven approaches prove effectively in recognizing pat-
terns of stereotyped movements [3]-[7], thereby alleviating the
workload on experts and physicians. While wearable sensor-
based methods have been employed for activity recognition
[8]-[12], the use of inertial sensors may be intrusive, and
children with Autism Spectrum Disorder (ASD) may experi-
ence discomfort or resistance, leading to reduced compliance.
As a result, an increasing number of studies are focusing
on video-based methods. These video-based approaches can
be divided into three main categories: The first, visual-based
methods [7], [13]-[16], focusing on extracting visual fea-
tures related to ASD children from video frames, encompass
RGB data and optical flow. This approach predicts types
of stereotyped movements by parsing a sequence of visual
information. Despite capturing rich spatiotemporal dimen-
sions, its performance is constrained by data quality, lighting
conditions, complex backgrounds, and noise . Therefore, there
is need for further research to achieve accurate classification
of stereotyped movements. Second, skeleton-based methods
[3], [6], [17], extracts the positions of skeleton points of ASD
children from video frames and predicts types of stereotyped
movements by analyzing these skeleton point trajectories. This
approach partially alleviates the impact of background noise
to some extent but still suffers from the quality of visual
information extraction. Additional studies are also required
to enhance the recognition of stereotyped movements based
on skeleton point motion patterns. The third category, vision-
skeleton multi-modality fusion methods, combines the pre-
vious two approaches by integrating different modalities of
data to enhance the performance of stereotyped movement
recognition. This method not only inherits the richness of
spatio-temporal information from vision-based approaches but
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also leverages the advantages of skeleton-based methods in
minimizing background noise interference. However, current
vision-skeleton multi-modality fusion methods have not been
applied to the recognition of stereotyped movements in ASD.
Therefore, video-based ASD stereotyped movements recogni-
tion still faces the following challenges: 1) the lack of data and
detailed categories of ASD stereotypical movements limit the
effects of algorithms, 2) the specificity and varying durations
of stereotyped movements make it difficult to capture relevant
patterns.

To address these challenges, we collected a novel video-
based dataset for stereotyped movements in children with
ASD, named ACSAG653. With the advancement of mixed
reality (MR) technology, diagnostic and rehabilitation ap-
proaches for ASD have evolved significantly [18]-[20], en-
abling the standardized collection of ASD behavioral data.
The ACSA653 dataset was collected during MR cognitive
training sessions and consists of 653 videos documenting
six types of physician-annotated stereotyped movements. It
aims to enhance the understanding of these movements in
children with ASD, offering greater category diversity and
scale compared to existing public datasets [3], [7], [16], [21]-
[23].

Furthermore, we propose an action pattern mining and
multi-modal fusion-based method for recognizing stereotyped
movements, termed APMFNet. This network effectively con-
structs structural models of skeleton point information and
ensures comprehensive fusion of features derived from both
visual and skeletal information. APMFNet consists of three
modules: Visual Motion learning (VML), Skeleton Rela-
tionship Mining (SRM) and Multi-Channel Fusion (MF), as
illustrated in Figure 1. In the VML module, we employ RGB
and optical flow data; by combining these two modalities,
we extract both dense and sparse information from the visual
channel, achieve the fusion of appearance and motion infor-
mation. In the SRM module, we construct a cross-modality
graph to represent the skeleton mapping, effectively captur-
ing the spatial relationships and dynamic changes between
joints and bones. We employ Adaptive Graph Convolutional
Networks (AGCN) to accurately extract specific patterns of
stereotyped movements. Finally, in the MF module, we used
cross-modality attention to fuse the information from visual
and skeletal modality. Through this approach, we effectively
integrate the motion and contextual background information,
thus improving recognition accuracy and robustness.

Our comparison experiments on the ACSA653 dataset
indicate that our proposed APMFNet outperforms existing
models for recognition ASD stereotyped movements with an
accuracy rate of 85.71% across six categories. In our ablation
study, we validated the effectiveness of each module in the
APMFNet framework. Additionally, using the Grad-CAM [24]
visualization method, we demonstrated how the model focuses
on key parts and identifies stable patterns of stereotyped
movements in each modality. This not only enhances the
model’s interpretability but further confirms its efficacy.

Thus, the main contributions of this paper are as follows:

o We have constructed a dataset, called ACSA653, covering

653 videos, representing six different classes of stereo-
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Fig. 1. The illustration of APMFNet, which extracts visual and skeleton
information via two separate modules. Visual information encompasses
spatial and motion data from RGB and optical flow, while skeleton
information comprises joint and bone pattern information. APMFNet
fuses the prediction from each modality to yield the final prediction.
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typed movements. This dataset has significant advantages
in both volume and variety.

o We propose a multi-modal fusion framework for ASD
stereotyped movements recognition through the effective
construction of structured modeling of skeleton point
information and the achievement of efficient fusion of
visual and structural information.

o Through extensive experiments and case studies, we
achieved the State-of-the-Art (SOTA) performance in
ASD stereotyped movements recognition; moreover,
through deep experiment analysis, the complementarity
between skeleton point information and video informa-
tion is explored, and a stable patterns of stereotyped
movements is computed.

Il. RELATED WORKS

Traditional methods for recognizing ASD stereotyped move-
ments are mainly based on observation and rating scales, yield-
ing in time-consuming and subjectivity. Although sensors have
also been deployed for recognition, their analytical capabilities
are limited and may be intrusive. Therefore, visual methods
are gradually introduced. Moreover, current work can mainly
be divided into three categories: Video-based Stereotyped
Movement Recognition, Skeleton-based Stereotyped Move-
ment Recognition, and Multi-Modality Fusion.

A. Video-based Stereotyped Movement Recognition

Currently, there are few studies on ASD that employ RGB
video data for tasks related to stereotyped movement recogni-
tion. However, methods designed for action recognition based
in videos can be adapted effectively for detecting stereotyped
movements in ASD. These approaches primarily depend on
video data, preserving a more comprehensive range of infor-
mation. The four primary types of video-based action recogni-
tion methods include handcrafted feature methods, static image
feature aggregation methods, 3D convolutional methods, dual-
stream methods and self-supervised learning methods.

1) Handcrafted Feature Methods: The handcrafted feature
method focuses on local feature or holistic feature detectors
and descriptors. These features, crucial in determining the final
recognition rate, are designed empirically [25]. For example,
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Negin et al. [3] have collected a new public video dataset from
social media channels to expand the dataset on stereotyped
movements. They endeavored to extract motion features in
videos of children with autism, employing descriptors such
as HOF (Histogram of Oriented Optical Flow) and HOG
(Histogram of Oriented Gradients). Subsequently, machine
learning classifiers, such as MLP, GNB, and SVM were em-
ployed for classification. Moreover, Zhang et al. [26] combined
handcrafted features with learned features from deep learning
models. This involved integrating Discrete Wavelet Transform
(DWT) with dense trajectory models and pre-trained dual-
stream CNN-RNN models. Such integration serves to address
the limitations of handcrafted features in action modeling.
However, it is important to mention that this approach may
not capture all the intricate patterns in video data, particularly
concerning stereotyped movements in children with ASD,
where the differences between classes are relatively small.

2) Static Image Feature Aggregation Methods: These ap-
proaches [27], [28] view a video as a sequence of RGB
images and employ CNNs to extract static image features.
These features are subsequently connected over time using
Long Short-Term Memory (LSTM) networks. However, this
method is contingent on high-quality datasets, as the quality
of the dataset’s quality directly impacts the accuracy of fea-
ture extraction. Moreover, this method tends to exhibit lower
robustness with complex or changing environments.

3) 3D Convolutional Methods: These methods [29] can si-
multaneously extract spatiotemporal features from videos in
horizontal, vertical, and temporal directions. This allows for a
more natural integration of multi-scale features. The O-GAD
network [7] consists of a 3D ConvNet time feature extractor
and a temporal pyramid network; it is employed to detect ASD
actions and distinguish among repetitive behaviors.

4) Dual-stream Methods: Inspired from the dual visual
information processing channels in the human brain, dual-
stream networks typically consist of two branches: one con-
centrates on static frames to capture appearance features,
utilizing input from RGB image sequences, while the other
takes in optical flow data to capture motion information. This
dual approach facilitates the fusion and complementarity of
appearance features and motion information [30]. However,
scenarios involving stereotyped movements in children with
ASD often present complexity. RGB data is susceptible to
factors such as lighting, background, and occlusions [13]-
[15], potentially diminishing the accuracy of recognition.
Simultaneously, optical flow data, while adept at capturing
motion, can often contain a considerable amount of noise
[31]. Therefore, relying solely on single-modal information
may prove insufficient for accurate recognition of stereotyped
movements in children with ASD. The integration of multi-
modal information becomes imperative for effective differen-
tiation.

5) Self-supervised Learning Methods: With the advance-
ment of video understanding, current supervised learning
methods require increasingly large amounts of annotated data,
which costs enormous human effort and time. Meanwhile,
a vast amount of unlabelled video data is easily available
on the internet. Therefore, some studies have focused on

leveraging unlabelled data through self-supervised learning to
enhance model generalization capabilities and reduce reliance
on annotated data. Among these methods, contrastive learning
[32] [33] [34] and masked image/video modeling [35] [36]
[37] are the main research directions.

Dave et al. [32] proposed a temporal contrastive learning
framework (TCLR), which introduces local-local and global-
local temporal contrastive losses to significantly enhance video
representation performance in downstream tasks such as action
recognition. Tian et al. [33] introduced the CLSA contrastive
learning framework, which synthesizes hard negative samples
and employs a selective global aggregation module, achieving
state-of-the-art performance in video rescaling tasks. Subse-
quently, Tian et al. [34] further proposed a hybrid coding
framework for low-bitrate video understanding, combining
traditional encoders with neural networks to enable efficient
understanding and optimized encoding of low-bitrate videos.

He et al. [35] proposed Masked Autoencoders (MAE),
which achieve efficient self-supervised visual representation
learning by masking a large proportion of input images and
reconstructing the masked parts. Building on this, Tong et
al. [36] proposed VideoMAE, which utilizes an extremely
high masking ratio to enhance the efficiency of video self-
supervised pre-training. Finally, Tian et al. [37] introduced a
non-semantic information suppression mask learning method,
which uses masking and self-supervised learning to reduce re-
dundant non-semantic information in videos, thereby improv-
ing video semantic compression efficiency and performance
across multiple downstream tasks.

B. Skeleton-based Stereotyped Movement Recognition

Skeleton-based action recognition methods have demon-
strated exceptional performance in the realm of action recog-
nition, primarily owing to their stable, accurate motion infor-
mation and resilience against lighting and background vari-
ations. These approaches commonly employ pose estimation
algorithms to derive low-dimensional skeleton data from RGB
videos. This data, characterized by its robustness to back-
ground noise, encapsulates essential spatial and temporal infor-
mation necessary for effective action recognition. Numerous
methods exist to infer the skeleton information of children
with ASD from images. The obtained skeleton information
is then fed into a neural network to predict the category
of movements. Finally, these methods can be divided into
handcrafted feature methods, 3D CNN methods, RNN-type
methods, and graph convolution methods.

1) Handcrafted Feature methods: Features related to move-
ments are extracted from the raw data in these methods. For
instance, Negin et al. [3] used the AlphaPose algorithm [38] to
extract skeleton joint information from RGB images. To do so,
they applied HOG, HOF, and HOG-HOF combination, as well
as SIFT, and SURF techniques to recognize the stereotyped
movements. For example, Wang et al. [39] employed 3D
joint position features and Local Occupancy Patterns (LOP) to
describe human activities. However, the quality of the video
affects the accuracy of pose estimation, thereby influencing
stereotyped movements recognition.
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2) 3D CNN Methods: 3D CNN methods are primarily de-
signed to address challenges of feature extraction in both the
spatial and temporal domains by applying deep convolutional
structures. For instance, Kim et al. [40] redesigned the TCN
model, introducing residual connections to improve both the
model’s explainability and recognition capability. This mod-
ification yielded excellent results, particularly on the NTU-
RGB+D dataset. Moreover, Liu et al. [41] utilized a dual-
stream 3D CNN to map skeleton joints into a 3D coordinate
space. To do so, they encoded spatial and temporal information
separately, contributing to enhance spatiotemporal features. In
addition, Cao et al. [42] introduced a more effective and robust
Joints-pooled 3D Deep-convolutional Descriptor (JDD). They
proposed a two-stream bilinear model that can learn guidance
from the body joints and capture the spatiotemporal features
simultaneously. Despite this advancement, these methods have
shortcomings in either spatial or temporal perception.

3) RNN-type Methods: RNN-type methods mainly employ
recurrent structures to capture sequential features of action,
addressing the challenges posed by dynamic changes and
non-linear patterns in continuous skeleton frames [43], [44].
The Part-aware LSTM model [45] divides human actions
into different body parts and establishes memory units within
each part. This allows the network to independently learn
the long-term patterns of each part, enhancing its ability to
capture actions features. For instance, Zhang et al. [6] used the
OpenPose [46] algorithm to generate the initial skeleton data
from autistic children’s videos. After eliminating skeleton data
noise, stereotyped movements were identified through LSTM.

4) Graph Convolution Methods: Graph convolution methods
capture the topological relationships of skeletons to alleviate
the shortcomings of traditional methods in capturing skeleton
spatial relationships. Moreover, ST-GCN [47] introduced joint
correlations and effectively used skeleton topological infor-
mation, showing good performance on datasets like NTU-
RGB+D [45]. 2s-AGCN [48] employed second-order infor-
mation (bone length and direction), which has more dis-
criminative power and information content for the task of
action recognition, thereby improving classification accuracy.
However, for video action recognition, this method lacks the
capacity to model the long-term temporal dependency of the
entire video [49].

Considering the similarity of stereotyped movements among
classes , models should make full use of skeleton information
to achieve improvements. Although skeleton information can
provide stable and accurate motion information, unaffected by
lighting and background to a large degree, it lacks surface
information, making it difficult to differentiate some similar
actions, especially when the inter-class differences in stereo-
typed movements are small, leading to potential confusion.

C. Multi-modality Fusion in Action Recognition

Behavior can be described through various modalities such
as RGB, depth, sound, optical flow, and skeleton informa-
tion.Utilizing multi-modal information enables a more com-
prehensive and complete describe representation of the data
source. Stereotyped movements are frequently influenced by
various factors in the scene, such as interference from other

objects or people [3]. Therefore, there is a need for more robust
methods to recognize stereotyped movements in adversarial
environments.

In video-based action recognition, dual-stream methods
adopt multi-modality fusion, integrating predictions based
on multiple modalities to enhance recognition accuracy. For
instance, Simonyan et al. [30] employed two modalities for
fusion: the spatial modality (appearance information from
static video frames) and the temporal modality (optical flow
information). Moreover, Feichtenhofer et al. [50] introduced
a new ConvNet architecture using appearance and optical
flow information for spatiotemporal fusion of video clips.
Yet, Carreira et al. [51] fed feature vectors from the RGB
and optical flow modalities into two separate I3D models,
averaging their predictions for the final output.

A different approach [49] was trained with four types of
modal information: single-channel RGB images, stacked RGB
difference images, stacked optical flow fields, and stacked
warped optical flow fields. For instance, Ali et al. [16] em-
ployed I3D models to fuse RGB and optical flow information
in both early and late fusion stages, verifying that the late
fusion performs better than the early one in recognizing ASD
stereotyped movements. However, the improvement from these
modal fusion methods is not significant.

Moreover, video and skeleton multi-modal fusion has been
proven to be effective. For instance, Du et al. [39] enhanced
action recognition accuracy by complementing skeleton infor-
mation with optical flow data at the joint points. In addition,
Khaire et al. [52] transformed RGB, depth, and skeleton
data into Motion History Image (MHI), Depth Motion Maps
(DMMs), and skeleton images, respectively. They trained these
methods via five Convolutional Neural Networks (5-CNNs)
and eventually used a Weighted Product Model (WPM) for
decision-level fusion. Furthermore, Song et al. [53] fused
joint data, RGB images, and optical flow data to design a
skeleton index transformation layer to automatically extract
visual features around key joints. This multi-modal informa-
tion complemented each other and performed excellently on
the NTU RGB+D dataset.

Because the differences between classes of stereotyped
movements in children with ASD are small, more modalities
are required for differentiation. Therefore, in the task of detect-
ing stereotyped movements, video and skeleton multi-modal
fusion can reduce data uncertainty and noise interference,
thereby enhancing classification stability and robustness.

I1l. PROBLEM FORMULATION

For video-based ASD stereotyped movements recognition,
current approaches mainly focus on employing video frames,
optical flow images, or skeleton-based methods. However, the
method proposed in this paper is designed to effectively mine
the pattern of the stereotyped movements in ASD children,
yielding in performing multi-channel fusion.

A. RGB-based and Optical Flow-based Methods

Given a set of action videos of ASD children, Vkgs =
{v1,v9,..., 05} where v; € RTXHXWX3 representing a
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Fig. 2. Setup and implementation of the MR Aquarium Training System used for collecting video data of children with ASD.

video, T' represents the video duration, H and W represent
the height and width of each frame, respectively, and the
number “3” represents the channel count. Setting the labels
L = {ly,ls,...,Ix} and their corresponding relationships
(v,1) where v € Vggp and | € L, a deep model, P, is
utilized to transform the frame sequence of each video wv;
into a fixed-length feature vector f; = ®(v;). These feature
vectors are then input into a classifier F' to determine the
relationship between feature vectors and action categories,
such that F'(f) = [ where | € L. The optical flow informa-
tion extracted from the RGB video stream is represented as
Oopiical = {01,02,...,0n}, where 0; € RTXHXWX2 gignifies
the optical flow data within a video. Each piece of optical flow
information comprises 7' frames of size H x W, with each
frame containing two channels representing the horizontal
and vertical movements. After serializing the optical flow
information, the optical flow frame sequence is transformed
into a feature vector f; = ®(0;), which is then fed into the
classifier F' to determine the action categories, resulting in
F(f)=1where [ € L.

B. Skeleton-based Methods

Skeleton-based methods derive joint streams J =
{j1,j2,-..,jn} from RGB video frames, where j; €
RTXNXXXY " Similarly, bone streams B = {by,bs,...,bn}
are obtained, with b; € RTXN*XXXY Here T denotes time
steps, and IV represents the number of skeletons and joints at
each time step, while X and Y correspond to the horizontal
and vertical coordinates in the 2D space. For joint data j;,,
each joint point j; ,,, (Where m = 1,2,..., N) represents the
m*" joint in the i'" data and can be viewed as a node v,,
in the graph G = (V, E), where V denotes the set of nodes
representing all joints, and E is a set of edges defined by
physical connections or other criteria between joints.

The graph G is then fed into the GCN for feature extraction,
producing features f, and f; from the skeleton and node
data, respectively. These features are independently processed
by two separate softmax layers, yielding Pin and Bope,
which are subsequently combined to produce the final skeletal
prediction Pygeleton-

C. Vision-Skeleton Multi-modality Fusion Methods

In the vision-skeleton fusion methods, the RGB video v and
optical flow o streams are processed through the VML module

to learn both visual spatial and motion information, resulting
in the extraction of visual feature frgg and frow-

The SRM module processes both joint and bone streams to
extract spatiotemporal features from the skeleton data. A cross-
modal spatiotemporal graph G = (V, F) is constructed for a
skeleton sequence with IV joints and N bones over 1" frames.
This graph contains 2N nodes, where each node represents
either a joint or a bone, allowing the integration of both motion

types. The vertex set V = {vlolnt pBone | ¢ = 1 . T i=
1,..., N} represents each joint and bone across frames.

The edge set EF comprises two types of connections: Eg,
which defines intra-frame connections based on the natural
links within the skeleton structure (joint-to-joint, bone-to-
bone, joint-to-bone), and E'r, which captures inter-frame tem-
poral dependencies by linking the same joint or bone across
consecutive frames. The graph G is fed into GCN to extract
skeleton movement pattern fskeleton-

To effectively fuse features from different modalities, we
apply a cross-modality attention mechanism to the extracted
frGB,> friow and fskeleton- Each modality’s feature is projected
into a shared feature space and then fused using cross-
attention to produce a unified representation O. This fused
representation is then passed through a classification layer to
obtain the final prediction P.

V. DATASET
A. Construction of the ACSA653 Dataset

1) The Environment of Dataset Acquisition: The data ac-
quisition environment for the ACSA653 dataset is the MR
aquarium training environment [19] (e.g., Figure 2). In this en-
vironment, children with ASD can participate in ASD training
courses and interact with virtual creatures through multi-touch
for cognitive training.

A camera is used to capture RGB video data directly
above the aquarium. Throughout the training, it points at the
performance of the child records as he is facing directly the
camera and spends most of his time sitting down. During the
training, a therapist will be standing behind the child. As a
result, a part of the video will show the therapist and the child
together, with the therapist’s body partially visible. Notably,
several patient subjects are present during the training sessions.

2) Data Collection and Quality Control: After five months
of acquisition, a total of 1.78 TB of video data with a total
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Fig. 3. Frames of ASD Children’s Stereotyped Movements Videos where (a) represents the single static RGB frames of six classes of stereotyped
movements and (b) denotes the sequential multiple static RGB frames of six classes of stereotyped movements.

length of about 360 hours, a width of 1600 pixels, and a height
of 896 pixels is acquired. Moreover, data is collected from
six children with ASD who are trained in the MR aquarium
training environment.

It is important to mention that collecting unguided behavior
data from ASD children in a natural MR rehabilitation training
setting ensures more authentic, representative, and low-bias
data, thereby enhancing the understanding of the behavioral
characteristics of children with ASD and the effectiveness of
intervention strategies.

3) Video Editing and Expert-Guided Data Annotation: Five
doctors were involved in the data annotation process as it
was achieved manually. The doctors were asked to label the
stereotyped movements of all six children with ASD in the
videos, recording the start and end times and the category of
the stereotyped movements.

Consequently, the videos were edited and cropped based on
the doctors’ annotations. The process involved two main steps:

1) Cropping the videos to ensure that the annotated subjects
were centered and fully visible. To achieve a uniform
format, the cropping dimensions were set to 400 pixels
in width and 800 pixels in height.

2) Editing the videos according to the recorded start and
end times of the stereotyped movements. The videos
acquired from this editing and cropping process were
then categorized and saved according to the annotated
types of stereotyped movements.

Ultimately, 653 video clips of stereotyped movements were
acquired in this study; some frames of the videos are displayed
in Figure 3. These video clips are labeled based on the fol-
lowing six categories of stereotyped movements: body swing,
hand clap, head skewed, over active, hand dancing, and poke.
As aresult, 122 videos related to body swing, 45 videos related
to hand clap, 86 videos related to head skewed, 218 videos
related to over active, 95 videos related to hand dancing, and
87 videos related to poke were identified.

4) Comparison with Other Datasets: We conducted a mul-
tidimensional comparison between the proposed ACSA653
dataset and existing datasets. Unlike the SSBD dataset, which
relies on publicly available YouTube videos, the ACSA653
dataset was collected during the MR training rehabilitation

process of children with ASD. This process was imperceptible
to the children, ensuring the natural authenticity of the data
and minimizing potential biases. Compared to other datasets,
ACSAG653 has advantages in terms of the number of samples,
action classes, and modalities (Referring to Table I). This
expanded sample size not only enhances the dataset’s rich-
ness but also facilitates a more in-depth exploration of ASD
stereotyped movements.

B. Extract Skeleton Information

Extracting skeleton features through human pose estimation
is an important step in bone behavior recognition. In a study
conducted by Duan et al. [54], they have found that a 2D pose
derived from a lightweight backbone network outperforms any
3D human pose source in action recognition tasks. As the
cropped image still contains parts of the body of other objects,
except for the labeled object, it is probably not suitable to
use the Single-Person Pose Estimation (SPPE) method. While
trying and visualizing the Single-Person Pose Estimation
(SPPE) and Multi-Person Pose Estimation (MPPE) results,
as shown in Figure 4(a), it is evident that single-person pose
estimation is difficult to extract accurate skeleton information
when applied on ACSA653. Moreover, as SPPE methods
focus on single person, their effectiveness decrease when there
is more than one person in the video. However, MPPE can
extract the multi-person accurate skeleton information in such
situation. Therefore, 2D MPPE method was applied to extract
the skeleton information throughout this work.

To extract skeleton information from a single ASD child in
the video, two initial pre-processing steps are required: pose
estimation and human objects tracking. The full details are
provided in sections IV-B.1 and IV-B.2

1) Pose Estimation: To achieve accurate and high-quality
human pose estimation, this study utilizes AlphaPose [38],
which employs the FastPose algorithm known for its strong
performance on the MSCOCO dataset [55]. When applied to
video data, AlphaPose performs frame-by-frame pose estima-
tion, extracting 17 key skeletal points. These key points, as
labeled in the model trained on the MSCOCO dataset, include:
0 - nose, 1 - left eye, 2 - right eye, 3 - left ear, 4 - right ear,
5 - left shoulder, 6 - right shoulder, 7 - left elbow, 8 - right
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TABLE |
COMPARISON BETWEEN ACSA DATASET AND SOME OF THE OTHER DATASETS FOR ASD STEREOTYPED MOVEMENTS RECOGNITION.
Dataset Video Classes Data Modalities Year
SSBD [21] 75 3 RGB 2013
M. Jazouli et.al. [22] 50 5 RGB 2016
ASD40h [7] 30 5 RGB 2019
ESBD [3] 141 4 RGB 2021
Activis [16] 388 5 RGB 2021
Updated SSBD [23] 61 3 RGB 2023
ACSA653 653 6 RGB+Skeleton 2023

Fig. 4.
single-person pose estimation method, and MPPE means multi-person
pose estimation. (b) Visualization of pose estimation by AlphaPose.

(a) Visualization of Pose Estimation Methods. SPPE means

elbow, 9 - left wrist, 10 - right wrist, 11 - left hip, 12 - right
hip, 13 - left knee, 14 - right knee, 15 - left ankle, and 16 -
right ankle. The results of the pose estimation are illustrated
in Figure 4(b).

2) Human Objects Tracking: When implementing a multi-
person pose estimation method, a video may yield predictions
for multiple individuals. To address this issue, PoseFlow [56]
is employed for continuous human objects tracking with the
video. This step ensures that only data corresponding to
labeled objects is retained, allowing the results of multi-
person pose estimation to align with the respective object.
Subsequently, the pose estimation results for labeled objects
are saved in accordance with their assigned IDs.

V. METHOD

As depicted in Figure 5, APMFNet contains three modules:

1) The Visual Motion Learning (VML) module extracts
spatial and motion information from RGB and optical-
flow sequences.

2) The Skeleton Relationship Mining (SRM) module
extracts skeleton pattern information from the joint and
bone stream, and constructs them into a cross-modal
graph. SRM effectively captures key motion patterns
related to stereotyped movements.

3) Finally, the Multi-channel Fusion (MF) module fuses
the visual information with the skeleton information
to ultimately predict stereotyped movement recognition
result P.

A. Spatial and Temporal Information Extraction in Visual
Motion Learning

The Visual Motion Learning Module (VML) aims to extract
visual and spatial features from RGB frames, providing a

comprehensive scene description that captures both dynamic
and static information. Considering the nuances of stereotyped
movements, it is crucial to obtain both spatial details and
temporal precision to understand the exact location and level
of change in the child’s body. To achieve this, SlowFast [57]
is employed, offering a dual-stream model that integrates: (1)
a slow pathway with high spatial detail but low temporal
resolution, (2) a fast pathway with high temporal resolution
but less spatial detail, and (3) a convolutional layer that fuses
information from the fast pathway into the slow pathway.
Identifying the complexity of real-world motion patterns,
capturing these patterns can’t be accomplished just by apply-
ing RGB frames; therefore, the VML module uses the TV-
L1 algorithm [51] to extract optical flow information from
sequences, thereby representing dynamic motion. For each
type of inputs (RGB frames V, Optical flow O), VML extract
features from both Slow and Fast pathways: F;, F;; ,the two
features are concated as F,, = [F, F, f] where x can be either
RGB (denoted as RGB) or optical flow (denoted as flow).
Each set of features feeds to a Fully Connected (FC) layer
and use softmax to obtain probability scores for each class.

Prgp = softmax(FC(Frap)) (1)

Pflow = softmax(FC(Fflow)) 2)

The cross-entropy loss is applied to each prediction set for
loss calculation. The loss functions for RGB and optical flow
inputs are defined as follows:

Lrge = — Z y; log(Prca,i) 3)

Liow == > _ yi10g(Prow.:) @

where y; represents the ground truth for class 4, and FPrgg,i
and Pjoy,; denote the predicted probabilities for the RGB and
optical flow pathways, respectively.

The VML module fuses static visual information from the
RGB frame sequence with dynamic scene variations captured
by the optical flow sequence. This not only improves the
understanding of visual features in stereotyped movements of
ASD children but also offers supplementary context for the
SRM module.
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Fig. 5. The schematic diagram of APMFNet: The optical flow O, join

t J, and bone B data is extracted from the RGB frames V. The Visual

module fuses V' and O, modalities, extracting spatial and motion information by SlowFast network; the SRM module uses J and B inputs for key
motional pattern mining through cross-modality graph; F%, F, and F are fused in the MF module through cross-modality attention to produce the

final predition P.

B. Stereotyped Movements Modeling in Skeleton
Relationship Mining

The Skeleton Relationship Mining (SRM) module aims to
build a relationship graph of human joints J and bonesB from
skeleton data, effectively mining the patterns of stereotyped
movements. This module uses a cross-modal graph to fuse the
joint and bone modality for predicting action categories. Joint
data provides the positional coordinates of each joint, while
Bone data captures the connections between joints, including
bone length and direction.

The SRM employs AlphaPose [38] to estimate joint posi-
tions and constructs the skeleton graph using joint connections
from the MSCOCO dataset [55]. Bone data B is calculated
based on the joint sequence .J, using connected key points to
derive bone vectors, such as by 2 = (z2 — Z1,Y2 — ¥1)-

To model the relationships adaptively, the SRM uses three
Adaptive Graph Convolutional Network (AGCN) layers with
output channels of 64, 128, and 256, respectively. The AGCN
layer allows the network to learn associations flexibly during
training, thus enhancing the model’s ability to understand the
complexity of human movement patterns.

To leverage the relationships between the joint and bone
modalities, we employed a graph structure to link these two
modalities (see in Fig. 6). The adjacency matrix A; ; of the
cross-modal graph is defined as:

1
1

0 otherwise

if Di,j and i <n,j<n

A; ifi<n,j>n

1,7 (5)

Where D; ; indicates that there is a relation between the two
nodes (joint-joint, joint-bone, or bone-bone) in the dependency
tree of the human skeleton mapping.

Joint Bone

o ¢ e
11 afa
» * 1 = 1 1 1
s
® o il 1 1 1
1 1 11
* 4 o & &
1 1 a e
(]
Py ° 5 11 1 1
o
11 11
o o 1 1 g 1
Joint Bone Cross-modal Graph

Fig. 6. Cross-modal graph linking joint and bone modalities for human
motion representation.

The SRM module take both the joint J and bone sequence
B as input noted f;,,. Suppose the input skeleton information
sequence data f;, has a size of C' x T x N, where N is the
number of key points, T" represents the length of time, and C
denotes the number of channels for the key points. In ST-GCN,
the graph convolution operation is formulated as follows:

K,

fou =Y Wi(finAr) © My, 6)
k

where K, denotes the size of the spatial dimensional convo-
lution kernel, usually set to 3, A determines whether there is
a connection, A% = Z A” + a represents the degree matrix,
Ay, is the N x N adjacency matrix, and element A}’ denotes
the connection between vertices v; and vy, Moreover, W
indicates the weight vector of size Cyy X Ciy x 1 x 1, My
represents the attention mask, determining the strength of the
connection, and, finally,® denotes the dot product operation.

In Eq. 6, the graph topological information is determined
by the adjacency matrix Ay and the attention mask Mj. To
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make the graph topological information adaptive, Shi et al.
[48] proposed the following equation:

K,
fou =Y Wifin(Ar + Bi + Cy) (7)
k

where Ay is consistent with that in Eq. 6 and represents the
adjacency matrix information, Bj starts with the same initial
value as Ay, but it is updated as a trainable parameter during
the training process, and C} determines the presence and
strength of the connection between any both points, similar
to the attention mechanisms. The dot product of the vectors is
commonly used to calculate the similarity between Query and
Key, the softmax function is used to normalize this similarity.

Queryr, = Wor fin 8
Keyr = Wy fin )

Cy = softmax(Query! Key") (10)

In Eq. 7, we define the operation of adaptive graph con-
volution. The Joint and Bone streams undergo three adaptive
graph convolution operations, resulting in feature Fs. Fj is
then passed through a fully connected layer and activated using
the softmax function to get the predicted outcomes P; defined
as follows:

Y

Moreover, the cross-entropy loss is applied to prediction set
for loss calculation. Therefore, the loss functions for the joint
and bone inputs are defined as follows:

P, = softmax(FC(F5))

Lskeleton = - Z Yi log(Psz) (12)
K2

where y; is the ground truth label for the i-th class, and P, ;
represents the predicted probabilities for the skeleton streams.

Finally, the predictions from the two streams, P; and P, are
added to derive the fused prediction Psgejeton, consequently
used to predict the label of stereotyped movements.

Information acquired from joints mainly provides the posi-
tions of various parts of the human body, whereas bones de-
scribe the connections with these joints. This module extracts
both skeleton joint and bone pattern information, capturing
motion features comprehensively. Compared to the visual
information, the information extracted from skeleton joints is
more robust; moreover, the interrelations between joint and
bone provide key information for mining the pattern of ASD
stereotyped movements in complex background conditions.

C. Multi-Channel Fusion

Visual information primarily derived from RGB frames and
optical flow data, provides detailed context and scene specifics.
However, this information can be compromised by background
noise or may struggle to accurately identify specific actions
in complex scenarios. Conversely, skeleton information offers
structural and action-related insights about the human body but
may lack sufficient context to explain the reasons or intentions
behind these actions.

Different modalities (M) provide various perspectives and
information about the same object. Skeleton information cap-
tures the structure and movements of the human body, while
visual information adds contextual background. To effectively
integrate this information, in the MF module, we map the
features of each modality into a shared feature space and
then use a cross-attention mechanism to fuse these features.
For modality M;, its input feature is represented as: X, €
RB*dm; - where B is the batch size and djy, is the feature
dimension.

The features of each modality are mapped to a unified
dimension d: Hy;, = X, Py, € RB*4 where Py, €
R?m: %4 {5 the projection matrix.

For each modality M;, the query vector Qjy, is computed,
and key and value vectors are prepared for other modalities:

Qu, = Hy, W) e RBX4 (13)
Ky, = Hy, Wy e REXd (14)
Va, = Hy, Wi ¢ RExd (15)

The query, key, and value vectors are split into h heads.
For each head k =1,...,A:

(k)(K(k))T
Al ), = softmax % v ae)

The outputs of all heads are concatenated:

Aut,ar, = Concat (A5 Al ) a7
The outputs from all modalities are collected:
A = Concat (A, —ng, | My, My € M, i#j)  (18)

The concatenated cross-attention outputs are passed through
a linear layer to obtain the fused feature representation:

0 = Ay W, € REX4 (19)

Moreover, to address class imbalance, the focal loss [58] is
applied to the prediction set for loss calculation. Therefore,
the loss functions for the joint and bone inputs are redefined
using focal loss as follows:

Liocal = — Z Ay, Yi (1 - Pi)’y IOg (Pz) (20)
3

where y; is the ground truth label for the ¢-th class, P;
represents the predicted probability for the i-th class. v is
the focusing parameter that adjusts the rate at which easy
examples are down-weighted. «,, is the weighting factor for
class y;, used to address class imbalance.

This cross-modality attention enables each modality to focus
on others, effectively capturing complementary information
and improving the model’s robustness across various scenarios.
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D. Training Strategy

We employed a late fusion strategy by independently train-
ing each modality and then using cross-modality attention to
fuse the extracted features, as shown in Algorithm 1.

Algorithm 1 APMFNet Optimization

Input:
V ={V®}i=1,...,N}: RGB videos
O ={0W]i=1,...,N}: Optical flow videos
J={JD|i=1,...,N}: Skeleton joints
B ={BW|i=1,...,N}: Skeleton bones

Procedure:

1: Train G, with RGB videos V using Lrcp as constraint.

2: Train G, with optical flow videos O using Loy as
constraint.

3: Train G5 with skeleton joints J and bones B using
Lskeleton @S constraint.

4: Train G 44 with the output features F),, F, and F using
L tocql as constraint.

QOutput:
Trained modules G, G,, G, and G 44 in APMFNet.

VI. EXPERIMENT
A. Dataset

The stereotyped movements dataset ACSA653, presented
in details in Section IV-A, is used in the experiments, and
the details of this dataset can be found above. The dataset
is acquired in a rehabilitation MR training environment for
children with ASD. To sum up, a large number of videos
were was acquired from the frontal side of the children, and
a total of 653 video clips of uniform specifications and high
quality of stereotyped movements in children with ASD were
obtained by manual cropping and editing. This involves the use
of six types of stereotyped movements. To conclude, Table II
describes the overview of the dataset.

Using the Scikit-learn package, the dataset is randomly
divided into proportions of 70% for the training set and
30% for the test set. Acknowledging the problem of an
uneven distribution of sample labels in the dataset, SMOTE
oversampling [59] is applied to the training set in this research
to generate training samples with increased data volume and
a balanced distribution.

B. Details of Implementation

Model building is implemented using PyTorch [60], a model
training is performed on a GTX2080 SUPER graphics card,
the applied optimization strategy for training is Adam [61], the
learning rate decay strategy is an exponential, the loss function
is represented by the cross-entropy function, and the Dropout
ratio is set to 0.5. In this study, the Optuna framework [62]
is applied to optimize the learning rate and the batch size in
training automatically.

To select the model of the video stream, ResNet-50 was
used for 3D convolution in both slow path and fast path
configurations [63]. Concerning the parameter settings, 7, a,

and [ values are set to 8, 8, and 1/8, respectively. The size of
the input video is scaled to 88 pixels in width and 176 pixels
in height. In addition, the video stream model is also pre-
trained on the Kinetics400 dataset, and then a fully connected
layer is added to the model generated by pre-training. In
this context, the input represents the number of classifications
(400) from Kinetics400 and the output indicates the number
of classifications (6) from ACSAG653. Therefore, the learning
rate ranges from 1 x 1075 to 5 x 10™%, and the batch size
range is between 3 and 6.

Concerning the skeleton stream, joint and bone streams
use the same structured network with three AGCN layers
stacked in the network, each having 64, 128, and 256 output
channels. The sample step length of the input video is set to
3 whereas the topological connections of the human skeleton
are initialized according to key points in MSCOCO properties.
They will lead to the calculation of vector data and the
generation of adjacency matrix. In the training phase, the
network is first pre-trained using the Kinetics400 dataset, and
the learning rate varies in the range of (1 x 107* ,1 x 1071)
with a batch size range between 4 and 80.

C. Evaluation of Model Performance

The accuracy is used to measure the trials, responding to
the ability of the model to correctly recognize the stereotyped
movement in the video. The formula is defined as follows:

Accuracy = (TP +TN) JALL

where T'P is the true positive, T'N represents the true negative,
and ALL indicates all outcomes.

D. Performance Comparison

We have compared the performance of deep learning al-
gorithms with different input types. The inputs include RGB,
Joint, and Multi-Channel. The experimental results are dis-
played in the Table III, where we have following observations:

o The dual-stream design of the SlowFast model signifi-
cantly enhances video analysis capability, particularly
in capturing spatiotemporal features. The SlowFast
outperforms ResNet50+LSTM and C3D. This suggests
that the dual-stream structure of SlowFast captures dense
and sparse temporal information efficiently, thereby cap-
turing key dynamics in videos.

o The graph-based method can more effectively model
human body joints relationship. When considering
the joint inputs, STGCN outperforms BiLSTM and
CNN+LSTM methods. This might be attributed to the
graph structure created by STGCN that efficiently cap-
tures spatial relationships and dynamic changes between
joints, helping in recognizing stereotyped movements.

o APMFNet makes significant improvements on
ACSA653, outperforming 2S-AGCN by 9.18%
and SlowFast by 3.57%. These results indicate that
APMFNet effectively fuses global prediction information
from the vision, joint, and skeleton.

o Inter-modal fusion generally increases accuracy, how-
ever the gains are depending on the specific modalities
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TABLE I
OVERVIEW OF ACSA653.
Dataset  Participants Action categories Number of each action videos #Videos
Body Hand Head Over Hand
swing clap skewed active dancin Poke
ACSA653 6 6 & @b & 653
122 45 86 218 98 87
TABLE Ill
PERFORMANCE COMPARISON OF VARIOUS METHODS SELECT TOP-1 ACCURACY AS A MEASURE.
Data Algorithms Accuracy bo.d y  hands hanfls head over poke
swing clap dancing skewed active

ResNet50+LSTM  0.5255 0.4286 0.2727 0.4286 0.3600 0.6618 0.6552
RGB C3D 0.6020 0.4286 0.3636 0.4643 0.6000 0.8088 0.5517
SlowFast 0.7653  0.7143 0.5455 0.7143 0.8400 0.8235 0.7586
BiLSTM 0.5153 0.5143 0.4545 0.4643 0.4800 0.5735 0.4828
Joint CNN+LSTM 0.648  0.6000 0.5455 0.6071 0.5600 0.7500 0.6207
STGCN 0.6327  0.6897 0.6667 0.6364 0.6786 0.5217 0.7576
Multi- 2S-AGCN 0.7551 0.8000 0.6364 0.6786 0.6000 0.8382 0.7586
Channel SlowFast 0.8112  0.8286 0.7273 0.7500 0.8000 0.8382 0.8276
APMFNet 0.8571 0.8857 0.8182 0.7600 0.8824 0.8966 0.8621

and their complementarity. SlowFast with RGB and
flow as inputs performs better than SlowFast with RGB,
but performs 4% worse in the third class where the
flow modality does not contribute to additional useful
information and might even interfere with the learning.

The outstanding performance of APMFNet can be attributed
to the innovative integration of multi-modal data and pattern
recognition capabilities. Its core strength lies in the effective
fusion of visual and skeleton information. The VML module
captures complex spatial and motion features, while the SRM
module mines skeleton patterns through a detailed key point
relationship graph. This integration is further enhanced by the
MF module, ensuring a comprehensive data representation.

E. Ablation Study

To analyze the effect of multi-modality fusion methods
on stereotyped movement recognition in children with ASD,
recognition alone or in combination accuracy was tested with
various modalities either. The input for the skeleton stream is
estimated using AlphaPose.

The experimental results in Table IV shows:

o The fusion of RGB and optical flow in the Slow-
Fast network enhances the recognition of stereotyped
movements effectively. For example, in the categories
of “body swing” and “hands dancing”, the performance
of V(R+O) is significantly better than using V(R) or
V(O) individually. This suggests that fusing RGB and the
optical flow information can consider both the spatiotem-
poral features and motional features of actions, thereby
complementing each other and improving the accuracy of
the stereotypical action recognition.

o The SRM module, fusing joint and skeleton infor-
mation, offers two different perspectives for skeleton
action analysis. The fusion of the joint modality (J) and
skeleton modality (B) is more efficient than using them
individually. For instance, in the “hands dancing” cate-
gory, the performance of V(R+O) is significantly better
compared to using V(R) or V(O) separately. Moreover,
knowing the position of the wrist without understanding
the structure of the entire arm may not be sufficient
to identify a “hands dancing” movement. When being
combined, the bone modality provides more context.

o Vision modality and skeleton modality are fused
effectively. Referring to Table IV, when comparing vision
modality (V) or skeleton modality (S) individually, the
accuracy rate for every category is further improved.

F. Case Study of Action Pattern Learning

In this section, the ability of the SRM module to extract
patterns of ASD children’s stereotyped movements is evalu-
ated. All classes from the ACSA653 dataset were selected,
specifically “Body Swing”, “Hands Clap”, “Hands Dancing”,
“Head Skewed”, “Over Active”, and “Poke”. Moreover, three
cases were analyzed for each category.

We effectively visualized the model’s attention points on
the human skeleton connection diagram by Grad-CAM [24]
visualization, as shown in Figure 7. The model’s attention to
joints is indicated by the size of the red circles on them, while
the attention to bones is represented by the thickness of the
red lines connecting them. Moreover, the visualization results
of the three cases are initialized in each category to validate
the capability of the SRM module in extracting stereotyped
movement patterns. When evaluating the SRM module across
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TABLE IV
EXPERIMENTAL RESULTS OF ABLATION STUDY.

body

hands

hands

head

over

Model Accuracy swing  clap dancing skewed active poke
V() 0.7653  0.7143 0.5455 0.7143 0.8400 0.8235 0.7586
V(O) 0.6173  0.6857 0.8182 0.6071 0.3200 0.5735 0.8276
V(R+0) 0.8112  0.8286 0.7273 0.7500 0.8000 0.8382 0.8276
S) 0.6786  0.6571 0.5455 0.6071 0.6800 0.7647 0.6207
S(B) 0.6735 0.6571 0.6364 0.5000 0.6400 0.7941 0.6207
SJ+B) 0.7551  0.8000 0.6364 0.6786 0.6000 0.8382 0.7586
VR+O0)+SJ+B)+F  0.8571  0.8857 0.8182 0.7600 0.8824 0.8966 0.8621
the six classes, the findings suggest that the SRM module Cafe ! Cas‘ez Casle3
effectively identifies and classifies the stereotyped movement f VI Vo !
features of children with ASD.
The visualization of joints and bones are shown in the st(v)i(iy
Figure 7, the following observations are derived: €
¢ Specifically, in the “Body Swing” class, the SRM module
shows accurate capture of the unique motion patterns of
ASD children. For example, in case 1, despite the smaller Hands
extent of “body swing”, the SRM module accurately Clap
focuses on the movements of the head, shoulders, and
arms. In other cases, with a larger extent of “body
swing”, it equally focuses on the movements of the head, Hands
shoulders, arms, and torso. Dancing
« In cases of “Hands Clap”, whether in joint or bone modal-
ity, the model focuses its attention on the movements of
hands and arms, accurately capturing the key patterns of Head
the “hands clap” movement. Skewed
o Similarly, in “Hands Dancing”, the attention of model fo-
cuses on the hands and arms, demonstrating the effective-
ness of mining the patterns of hand-dancing movements. Over
« For the “Head Skewed” class, the model focuses on the  pgtive
head and torso movements, central to understanding this
motion pattern.
« In the “Over Active” class, model focuses on parts where
the movement extent is larger, including the legs and Poke
arms, aligning with the features of “Over Active”.

e In the “Poke” class, even with indirect hand movements,
the model consistently concentrates on the hands and
arms, effectively mining the “poke” motion patterns.

These findings collectively prove the SRM module’s efficiency
on pattern mining and accuracy in recognizing the stereotyp-
ical movements of ASD children.

G. Error Analysis

Based on the above analysis, we find that each module of
the APMFNet plays a pivot role in alleviating the issue of
the inadequacy of video and skeleton fusion. In this section,
we will delve into the complementary approaches to multi-
modal fusion through error analysis. We randomly selected
stereotyped movements from four ASD children found in the
ACSA653 dataset and observed the attention areas of the
model on these samples using the Grad-CAM visualization
method. Therefore, Figure 8 illustrates the model’s attention
area variations on random samples from the ASCA653 dataset.

Fig. 7. Visualization of model attention on skeleton modality.

In case 1, both the vision and skeleton modalities
were capable of capturing the movement features of ASD
children in the “hands dancing” class. When both modalities
accurately captured the motion features, it is recognized to
the visual data being clear without significant obstructions or
noise, and the skeleton data accurately reflecting the dynamic
movement of key points. Moreover, modal fusion enhanced
the model’s robustness in fine-grained reasoning.

In case 2, the vision modality failed to fully focus on
the movement features of ASD children, and the visual
noise led to a dispersion of attention. In this case, the
model’s attention was attracted to other children in the back-
ground, with the vision modality only partially focusing on the
movement features. However, due to the skeleton modality’s
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Fig. 8.  Visualization of model attention, RGB Features, Optical Flow

Features, Joint Features and Bone Features represent the the model
attention in different modalities.

insensitivity to background changes, it was still able to provide
clear information regarding the main body movements and key
point locations, which helps reduce the model’s susceptibility
to visual noise.

In case 3, the skeleton modality exhibits limited efficacy
in modeling the children’s motion features, especially when
the arms and legs of children with ASD overlapped, the model
encountering obstacles in learning the associations between
different nodes. Meanwhile, the vision modality successfully
captured the children’s motion features. In such situations,
the fusion of vision and skeleton modalities provided crucial
information to resolve the issue of overlapping body parts.

In case 4, neither the vision nor skeleton modalities
captured the movement features of ASD children effec-
tively. The vision modality was disrupted by background noise
when extracting the child’s motion features due to concurrent
movement of the ASD child and a doctor in the background,
and the skeleton modality is hard to construct a key point
relationship graph accurately due to some skeleton nodes
being obscured. However, the optical flow and bone modalities
captured some movement features, with optical flow capturing
the motion features of the child’s head, and bone capturing the
movement features of the shoulders and arms, representing
key patterns of the “Body Swing” movement. Moreover, in
complex situations with motion interference, although some

modalities were unable to provide effective information, multi-
modal fusion was still effective in capturing some of the
child’s movement features, yielding in valuable information
for stereotyped movements recognition.

VII.

In this study, we constructed an ASD stereotyped move-
ments dataset, called ACSA653. It includes 653 videos across
six different classes. ACSA653 provides more samples, classes
and modalities than other stereotyped movements datasets.

We designed APMFNet, a model comprising the VML,
SRM, and MF modules. APMFNet processes video-based
RGB streams, optical flow streams, as well as joint and bone
streams derived from skeleton data. The model effectively cap-
tures patterns of stereotyped movements, thereby improving
the recognition performance of ASD-related movements. By
efficiently integrating scene details and contextual information
with the human body’s structural and motion patterns, the
model enhances both predictive accuracy and generalization
capabilities. This fusion is particularly important for address-
ing the challenges posed by complex scenes in diagnos-
ing stereotyped movements in autism spectrum disorder and
resolving issues arising from similarities between different
classes of movements.

Concerning the future work, we will further attempt to
employ more advanced network designs to fuse the modalities
at different time stages. We also plan to explore the way
to align features effectively through network architectures or
training strategies, aiming to optimize the flow of information
between different modalities. This will enhance the efficiency
and accuracy of stereotyped movement recognition in ASD.

CONCLUSION
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